Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline.
نویسندگان
چکیده
PURPOSE To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). METHODS AND MATERIALS Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. RESULTS In both structures, longitudinal diffusivity (λ(‖)) decreased and perpendicular diffusivity (λ(⊥)) increased after RT, with early changes correlating to later changes (p < .05). The radiation dose correlated with an increase in cingulum λ(⊥) at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ(⊥) at 3 and 6 weeks (p < .05). The post-RT changes in verbal recall scores correlated linearly with the late changes in cingulum λ(‖) (30 weeks, p < .02). Using receiver operating characteristic curves, early cingulum λ(‖) changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. CONCLUSIONS The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.
منابع مشابه
Cigarette smoking is associated with reduced microstructural integrity of cerebral white matter.
Cigarette smoking doubles the risk of dementia and Alzheimer's disease. Various pathophysiological pathways have been proposed to cause such a cognitive decline, but the exact mechanisms remain unclear. Smoking may affect the microstructural integrity of cerebral white matter. Diffusion tensor imaging is known to be sensitive for microstructural changes in cerebral white matter. We therefore cr...
متن کاملWhite matter microstructural integrity and cognitive function in a general elderly population.
CONTEXT The role of macrostructural white matter changes, such as atrophy and white matter lesions, in cognitive decline is increasingly being recognized. However, in the elderly population, these macrostructural changes do not account for all variability in cognition. Measures reflecting white matter microstructural integrity may provide additional information to investigate the relation betwe...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملWhite matter integrity in small vessel disease is related to cognition
Cerebral small vessel disease, including white matter hyperintensities (WMH) and lacunes of presumed vascular origin, is common in elderly people and is related to cognitive impairment and dementia. One possible mechanism could be the disruption of white matter tracts (both within WMH and normal-appearing white matter) that connect distributed brain regions involved in cognitive functions. Here...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of radiation oncology, biology, physics
دوره 82 5 شماره
صفحات -
تاریخ انتشار 2012